
February 2003 www.stsc.hill.af.mil 13

Former Assistant Secretary of Defense
for Command, Control, Communica-

tions, and Intelligence Emmett Paige
issued a memo in 1996 abrogating the
Department of Defense’s (DoD) single-
language policy. His memo included a
clause designating programming language
selection as a part of the Software
Engineering Process Review (SEPR).
Many who read the memo mistakenly
assumed his intent was a license to aban-
don Ada rather than advice to determine
language selection as part of a rational
evaluation step.

As a consequence of misinterpreting
Paige’s memo, the DoD is retrogressing
toward the situation prior to 1983; a peri-
od sometimes described in Tower-of-Babel
terms. Projects are adopting a language du
jour policy that is destined to restore the
havoc experienced prior to the single-lan-
guage policy. For example, one DoD soft-
ware group has replaced all of its Ada
code with Perl. While Perl is a perfectly
good scripting language, the decision to
use it instead of Ada for this application
represents a substantial failure of manage-
ment to understand its long-range respon-
sibilities. Program managers are once
again required to cope with a multiple-lan-
guage policy rather than a single-language
policy.

When the Ada mandate was relaxed,
some in the software community asked,
“If the DoD cannot manage a single-lan-
guage policy, how can it be expected to
manage a multiple-language policy?”
Although it was not explicitly stated in his
memo, Paige did not want a return to the
days of more than 400 DoD program-
ming languages. He included the SEPR
clause intending to provide guidance for
this new multi-language policy.

Most DoD program managers are
unprepared to make decisions regarding
language choice. They are at the mercy of
each contractor. In the future, we will see
DoD software written in Java, C++, C#,
Ada, Eiffel, Ruby, Perl, Python, Smalltalk,

Fortran, COBOL, Euclid, Lisp, Prolog,
Haskell, or even some proprietary lan-
guages invented by contractors.

Compilers for these languages, with
the exception of Java and Ada, implement
dialects that fail to correspond to a pub-
lished standard. Gone are the days when a
program manager would be able to insist
on a validated compiler for the chosen
programming language. No one even pre-
tends that C++ compilers can be validat-

ed. In my conversations with program
managers, I find that many have simply
abandoned the language decision to the
contractor. While this is expedient in the
short term, it is likely to create major
problems in the future. The Tower of
Babel is slowly being rebuilt.

More Mature Selection
At first, many in the software community
were surprised that someone with Paige’s
appreciation of Ada would issue a memo
abrogating its mandate. In meetings with
Ada advocates subsequent to the SEPR
memorandum, Paige emphasized several
key points. He noted that, with more than
50 million lines of Ada code deployed in
operational weapons systems, Ada had
proven it could do the job it was intended
to do. He also noted that, instead of uni-
fying the software community within the
DoD, Ada had become a rallying point for
bickering among contractors and military
officials. Its image was being tarnished

through flurries of e-mail and other cor-
respondence, often by some of the very
people who were its advocates. Paige
came to believe that Ada was good
enough to stand on its own against alter-
native choices.

His decision coincided with the
advent of the Ada 95 standard. In 1995,
Ada changed from a military standard
(MIL-STD 1815A) to an ISO/ANSI stan-
dard (ISO8652-1995), which made Ada
95 a powerful language for real-time,
embedded object-oriented systems.
Those who discovered that fact are enjoy-
ing the benefits of Ada while those who
have chosen error-prone languages such
as C++ have a long struggle ahead of
them. The DoD will not be the benefici-
ary of that struggle.

Paige envisioned the SEPR as an
essential part of any DoD software engi-
neering effort. We know that successful
software engineering projects start at a
high level of abstraction. Before adopting
tools, languages, and methods, we need to
answer a question at the highest level of
abstraction: “What problem are we trying
to solve?”

As a project moves forward, even
under agile processes, there is a succession
of reviews to decide on methods, tools,
and languages. We use the plural of lan-
guage because more and more contempo-
rary projects are implemented in multi-
language environments. We would not
choose C++ where HTML is appropriate
nor would we choose Ada where we could
more effectively use MATLAB. Java
would be inappropriate for high reliability
mathematical applications but might be
perfect for displaying some of the results
of those computations. XML is of grow-
ing importance, and XML works well with
both Java and Ada.

In other words, we select the appro-
priate language for the problem to be
solved. This is analogous to selecting the
right tool for the job at hand. A pipe
wrench does a different job than a box

SEPR and Programming Language Selection
Richard Riehle

Naval Postgraduate School

When former Assistant Secretary of Defense for Command, Control, Communications, and Intelligence Emmett Paige
issued a memo in 1996 abrogating the Department of Defense’s single-language policy, he included a clause designating pro-
gramming language selection as a part of the Software Engineering Process Review (SEPR). The intent of his memo and
its realization have not yet converged. Many readers of the memo mistakenly assumed his intent was a license to abandon
Ada rather than advice to determine language selection as part of a rational evaluation step in the SEPR. This article
addresses that confusion. Many of the references to Paige in this article originate in private conversations and correspondence
between Paige and the author.

“Program managers are
once again required to

cope with a
multiple-language policy

rather than a
single-language policy.”

Programming Languages

14 CROSSTALK The Journal of Defense Software Engineering February 2003

wrench. When there is a chance we might
break off the head of a bolt with a long-
handled wrench, we use a torque wrench.
Of course, we must know something
about torque wrenches before we use
them.

Paige’s SEPR memo suggests that pro-
gramming language selection should be a
carefully considered process with the
decision made on the basis of criteria
derived from the project requirements.
Although it was noted earlier that Paige
was responding to a controversy, it was
that controversy that led to his realization
that the DoD needed a more mature
approach to programming language selec-
tion. This, in turn, led him to the decision
to include programming language choice
in the SEPR.

One important benefit of abrogating
the mandate has been the democratization
of Ada. When the mandate was in place,
Ada compiler publishers had the DoD as
a captive customer. They could charge
whatever they wanted for their technolo-
gy. Prior to the Ada 95 standard, Ada
compilers and tools were priced so com-
mercial software developers could not
afford them. When that captive DoD
audience diminished, many Ada compiler
publishers vanished or merged. In the
absence of the mandate, compilers and
tools, downloadable by anyone with
access to the Internet, are now free.

Programmers worldwide are now
experimenting with Ada. More non-DoD
developers are quietly using it.
Contemporary Ada has been adopted by
the United States’ friends and enemies.
For example, Iranian and Chinese military
software engineers are now using Ada. It
is not as popular as C++ or Java, but it is
equal to those languages in every way and
better in some respects. At this stage, the
cost of Ada technology should not be any
greater than for C++ technology. Ada
compilers are no more difficult to create
than C++ compilers. They can be hosted
on any computer in existence or being
planned.

Programming languages are designed
according to different goals. The SEPR
must consider its language choice with an
understanding of those goals, along with
other factors. Those other factors include
mission requirements such as targeted
platform, expected level of dependability,
maintenance ease, compiler availability,
development tools, and environments as
well as others. The factors should be
determined by defining the criteria appro-
priate to the software product require-
ments.

Too often, language is chosen by the

programmers, the contractor, or through
some ad hoc decision-making process that
has little to do with the underlying
requirements. It is not unusual to see pro-
grammers make the language decision in
pursuit of career goals. Do not let the
programmers decide what language will
be used for a sensitive DoD project. Long
after the original programmers are gone,
the software will require continued main-
tenance. Language choice must be a man-
agement decision based on what is best
for the long-term health of the final soft-
ware product.

It is rarely difficult for programmers
to learn the language needed for the proj-
ect. Ada, well taught, is as easy to learn as
any other contemporary language. Our
tools, including our programming lan-
guages, must help us meet the mission
requirements with minimal error and
maximum reliability.

Reliability is an essential criteria for
DoD weapons systems. A pilot attempt-
ing a carrier landing will be greatly
annoyed if greeted by a heads-up display
that announces, “Sorry. System error
occurred. Please reboot.” That is the kind
of thing that can happen if we make the
wrong choices.

So how should the programming lan-
guages be selected during the SEPR? I
believe the answer lies in ideas: context
and criteria. Can criteria be defined in the
context of the future product? Lloyd
Mosemann, senior vice president of
Corporate Development for Science
Applications International Corporation
and former deputy assistant secretary of
the Air Force for Communications,
Computers, and Logistics, often cites pre-
dictability as an essential characteristic of
DoD software. Predictability is an essen-
tial property of any engineering effort.
Software engineering is not any different.

Can DoD program managers give
guidance and direction about program-
ming language choice? Should they simply
provide context and criteria and let the
software contractor choose the program-
ming language? I believe the program
manager, representing the DoD, should
have a role in the programming language
decision. The sad fact is that I see many
contractors making the programming lan-
guage choice on the basis of convenience,
résumé building, and other factors that
have little to do with product quality.
Some consultants make recommendations
based on poorly chosen criteria. Worst of
all, language choices are made on the basis
of what is currently popular rather than
on what is best for a particular project.

Language Options
Because so many languages are available,
this article focuses on object-oriented
programming (OOP) languages. There are
many OOP language choices available,
including Smalltalk, C++, C#, Java, Ada,
Eiffel, Modula-3, and Object COBOL.
This list could be longer, especially if it
included some of the excellent new lan-
guages, such as Ruby, or discussed the
value of functional languages such as
Objective CAML and Haskell.

Each language has benefits in given
application domains. Some are better for
one domain than another. Advocates will
make the case that a favorite from the list
is great for every kind of application, but
that claim must be supported by the crite-
ria declared for the targeted domain.

The language decision must recognize
the difference between two issues: express-
ibility and expressiveness. Nearly every pro-
gramming idea can be expressed in your
favorite language. Expressiveness is about
how well a language maps its solution
space to the problem space. The ability to
express an idea is called expressibility. The
ease of expressing that idea is called
expressiveness. For example, we might be
able to compute Bessel functions in Lisp,
but Fortran better expresses mathematical
functions than Lisp. Lisp is more expres-
sive of ideas related to artificial intelli-
gence.

A DoD contractor for whom I once
worked was assigned to create materials
management software for a specialized
Navy environment. At that time, the con-
tractor was a Fortran programming shop.
Some members of our team, comfortable
with Fortran, insisted we could do the
entire project in Fortran. From the per-
spective of expressibility, they were right.
Others on the team made the case for
COBOL. The COBOL advocates correct-

“Too often, language is
chosen by the

programmers, the
contractor, or through

some ad hoc
decision-making process
that has little to do with

the underlying
requirements.”

SEPR and Programming Language Selection

February 2003 www.stsc.hill.af.mil 15

ly pointed out that COBOL was designed
to express exactly this kind of application.
The Fortran advocates correctly pointed
out that they could do anything in Fortran
that the other group could do in COBOL.
The COBOL advocates won the day. The
deciding factor was one of expressiveness
over expressibility. Although Fortran could
express the required programming solu-
tions, management decided that COBOL
was more expressive of those solutions.

Expressiveness is one of the earliest
issues to consider before choosing other
criteria. However, one needs to exercise
some care about this. Some special pur-
pose languages are expressive for specific
applications, but targeted so narrowly they
fail to meet other requirements. Also,
many expressive languages are propri-
etary, useful only on one operating sys-
tem, or poorly supported. For example,
Visual BASIC is popular for program-
ming on Microsoft platforms but is non-
portable when considering other environ-
ments.

The program manager and the con-
tractor together formulate the relevant
criteria. Are the applications computa-
tional/numerical? Is nonportable soft-
ware OK? Must we be able to deploy on
multiple operating systems? Will this
application require a lot of string manipu-
lation? Is there an embedded real-time
requirement? Must we interface with
other languages? Is the application short-
lived or long-lived? What is the cost of a
software failure? Do we expect a lot of
enhancements during the life cycle of this
product? Is this a graphics product? What
are the human-machine interface require-
ments? What are the software architecture
considerations? Can we get efficient code
from the available compilers? Is there a
technology transition cost? The list of
possible questions continues.

As you develop criteria, try to include
a numerical weight and rating. This is a
good place to use a spreadsheet listing
languages and criteria with weights for the
various criteria (see Table 1). Have more
than one person assigning the scores on
separate versions of the spreadsheet. You
will be surprised by the disparity of view-
points. Gather those involved in the scor-
ing process and encourage a discussion
that excavates biases, predilections, and
perversions that may have influenced each
person’s scoring. The final score on the
spreadsheet should be one of your indica-
tors, but not the only indicator.

Language Criteria
Consider Table 1 in which sample criteria
are weighted in favor of a safety-critical

weapon systems. The entries will vary
according to each kind of system. To
avoid introducing too much bias into the
chart, and to acknowledge that projects
will evaluate criteria differently, I have
masked the names of the languages. Your
evaluation would insert the languages of
interest in the spreadsheet.

Let me emphasize that Table 1 will
look different after you have combined
the scores from more than one person.
Where the example shows a score for
OOP of five for Language D and four for
Language E, someone else might score
these differently. Also, someone might
take issue with a score of one for
Language E on Microsoft Windows. Even
if no one argues about zero for built-in
concurrency, they might argue that exter-
nal (operating system-based) concurrency
is a close enough equivalent.

Some Language Choices
Some of the OOP language choices were
named earlier. The following sections
contain a few pros and cons of some lan-
guages. I have chosen to mention
Smalltalk, C++, Ada, Java, Eiffel, and
Object COBOL. If there were enough
space, I would have included some other
favorites such as Modula-3, Haskell, and
Ruby. Also, logic languages such as Prolog
often have an important place in DoD
applications. While this is all a matter of

opinion, it is opinion derived from experi-
ence as well as study of the given exam-
ples.

Smalltalk
This is still the gold standard for OOP.
Whenever someone writes about OOP,
they compare their favorite language to
Smalltalk. It is fun to program in
Smalltalk. Although it has fallen out of
popularity during the past several years, it
comes with a powerful development envi-
ronment, a large selection of libraries, and
a small but powerful collection of fea-
tures for building interactive applications.
It is not a type-based language and does
less compile-time checking than other lan-
guages. It is excellent for applications
where dynamic binding is beneficial. It is
not appropriate for safety-critical or
embedded weapon systems applications.
Smalltalk is portable enough for most sit-
uations. I personally like Smalltalk, but
must realistically acknowledge its limita-
tions.

C++
This language gained a large following
during the 1990s. It is losing some ground
to Java. C++ has both severe critics and
committed advocates. It is a general pur-
pose OOP language that became an ISO
standard in the late 1990s. Few compilers
support the full ISO standard so develop-

Language

Criteria Weight A B C D E F

Object-Oriented Programming (OOP) 3 3 3 4 5 4 5

Built-in Concurrency 5 5 0 3 2 0 0

Safety-Critical Features 5 5 3 3 4 3 1

Ease of Learning 3 3 2 4 4 4 5

Java Virtual Machine 2 3 0 5 2 0 0

Portability 4 4 3 4 4 3 4

Relevant Component Libraries 4 4 4 4 4 4 2

Open Source Compilers 2 4 4 2 2 2 5

Pre-, Post-, and Invariant Assertions 3 3 1 4 5 2 2

Type Safety 4 5 3 4 4 4 2

Development Tools 3 3 4 5 5 3 2

Language Maturity 4 4 4 3 4 1 1

Market Penetration 3 2 5 5 1 0 1

Microsoft Windows 2 4 5 1 4 3 3

Linux 4 4 3 1 4 1 5

Other Unix 4 4 3 1 4 1 5

Generic Templates 4 5 5 0 4 0 0

ISO/ANSI Standard Compliance 5 5 4 0 0 0 0

Interoperability 4 5 4 3 3 2 1

Raw Totals: 75 60 56 65 37 44

Weighted Totals: 279 214 192 230 128 146

Table 1: Language Criteria Spreadsheet

Programming Languages

16 CROSSTALK The Journal of Defense Software Engineering February 2003

ers often design around a subset of the
C++ language to achieve portability. The
language has a type system built on prede-
fined primitive types and designer-defined
classes. A well designed class is supposed
to behave like a predefined type.

The C++ type system has weaknesses.
Among these are the notion of structural
equivalence, the potential for unruly
pointers, and the excessive reliance on
predefined types as primitives. Typecast-
ing in C++ is fraught with potential dan-
gers. C++ has borrowed a number of fea-
tures from Ada, including genericity,
exception handling, and dynamic memory
allocators.

It is a satisfactory language for non-
critical software such as windowing appli-
cations and graphics. It is a poor choice
for any kind of safety-critical application.
It is probably a terrible choice for weapon
systems, radar, space applications, or
flight-control software. Validation suites
for C++ do exist. Unlike Ada, C++ is
held to a lower standard and no program
manager or contractor ever suggests
requiring a validated compiler.

Ada
The ISO 1995 Ada standard is a great
improvement over the original 1983 stan-
dard. The primary goal of Ada is to max-
imize the amount of error detection a
compiler can perform as early in the
development process as possible. This has
led to the strongest type-safety model of
any contemporary language supplement-
ed with a set of rules for scope and visi-
bility that prevents name collisions, struc-
tural equivalence problems, dangling
pointers, pointers to nonexistent data,
along with many other problems. Ada
supports several levels of object technol-
ogy, including inheritance, polymorphism,
dynamic binding, and genericity.
However, OOP is optional and can be
avoided when inappropriate for a particu-
lar application. Ada supports built-in con-
currency and embedded real-time sys-
tems.

It is still the best choice for DoD soft-
ware such as safety-critical, real-time
weapon systems and flight-control soft-
ware. For interoperability, Ada 95 is prob-
ably the most hospitable language of all.
It directly interfaces with several legacy
languages as well as with C++ and XML.
Ada compilers used for DoD software are
held to a higher standard than any other
language. That is, the compilers for Ada
are always required to pass the validation
suite before they can be used in DoD
applications. Safety-critical applications
continue to be best served by Ada.

Java
Not since PL/I has a language been
introduced into the marketplace with so
much hyperbole. Java is a language that
promises to become better with time. At
the elementary level, it is comparatively
easy to learn. It is, in many respects, safer
than C++. Indirection in Java does not
use computational pointers, thereby
reducing some of the risks encountered
with C++. It also has automatic garbage
collection, which some see as a blessing
and others as a curse. Java consists of
three basic parts: the language, the
libraries, and the Java Virtual Machine
(JVM). The most important contribution
of Java is not the language. The language
actually contributes very little new and
actually represents a step backward in
some respects. Rather, the important
thing about Java is the libraries and the
JVM. In particular, the JVM permits a
high level of portability for compiled
applets.

Java includes a capability for concur-
rency but falls short of the concurrency
model of Ada. Java provides none of the

deterministic behavior expected for a
hard, real-time software environment.
Like Smalltalk, Java is fun for program-
ming, largely because it appeals to the
instant gratification that entices so many
of us. The language includes a disclaimer
that it is not intended for safety-critical
applications. Do not use it for weapon
systems or applications where high relia-
bility is required. Java is not yet a stan-
dard. It seems to be an evolving product
that will probably stabilize in the next
couple of years.

Eiffel
This is a relative newcomer, but older
than Java. It is everything one could get
from Java, except the bytecode. Grady
Booch, chief scientist at Rational
Software Corporation, in an off-the-cuff
remark at a software conference said of

Eiffel, “Eiffel is what C++ could have
been if C++ had not been dependent on
C.”

The language permits a stronger typ-
ing model than Smalltalk but still empha-
sizes a pure OOP approach. For applica-
tions programming it is a better choice
than C++ because it permits a more nat-
ural form of expressiveness than C++.
When considering type safety, Eiffel is
probably more reliable than C++. Eiffel
includes a powerful development envi-
ronment along with a full library of
generic reusable components. Eiffel does
not enjoy the large audience of users it
deserves. Most Eiffel compilers are C
Path, meaning they generate intermediate
C code. Eiffel also has a built-in capabili-
ty for programming with assertions.
Assertions are pre-, post-, and invariant
conditions that can be applied at many
levels within an Eiffel module. The
designer of the Eiffel language, Dr.
Bertrand Meyer, calls the use of this fea-
ture design-by-contract. None of the other
languages mentioned so far are as robust
in this regard. Even Ada, which supports
a kind of range constraint assertion, does
not yet support assertions such as those
found in Eiffel.

Eiffel is still not my first choice for
safety-critical weapons systems, but it is
probably a better choice than either C++
or Java. There is no ISO standard for
Eiffel, but there is an international body
called Network Information and Control
Exchange that oversees its progress. A
program manager once told me, “The
only two languages I would consider are
Ada and Eiffel.” If you have not yet
looked at Eiffel, you might consider
doing so.

Object COBOL
If you are currently programming in
COBOL, Object COBOL makes sense.
Many COBOL shops are making the mis-
take of converting to Java, or worse, C++.
The syntax of Object COBOL will be
familiar to your programmers. They can
learn OOP on the job using this familiar
syntax. Everything you liked about
COBOL is still there, but you can enjoy
inheritance, information hiding, encapsu-
lation, polymorphism, dynamic binding,
and everything else expected from an
OOP language. Contemporary COBOL is
a language with expressive power required
for business and business-like applica-
tions. It includes features that will make
your current COBOL programmers and
systems analysts more productive than
they would be after retraining in some
other language. Object COBOL can

“With the abrogation of
the DoD’s single

language policy, we need
to take care not to fall

into the trap of avoiding
Ada or becoming too

attached to it.”

SEPR and Programming Language Selection

February 2003 www.stsc.hill.af.mil 17

improve communications between clients
and systems analysts as well as between
systems analysts and programmers.
Object COBOL is not appropriate for
safety-critical weapons systems, but it is an
excellent step into the future if you are
already in a COBOL programming envi-
ronment.

Summary
The programming language selection
process for DoD software systems is too
often made on the basis of inadequate
criteria. With the abrogation of the
DoD’s single language policy, take care
not to fall into the trap of avoiding Ada
or becoming too attached to it. It is
important to recognize the strengths and
weaknesses of more popular languages

such as C++ and Java, and understand
when to choose them and when to reject
them.

Paige’s SEPR memorandum suggests
a direction without specifying too many
details. As we implement his suggestions,
we must do so on the basis of carefully
defined criteria and with sufficient knowl-
edge to understand the contribution of
each of the alternatives in terms of those
criteria. Also, selecting the language is not
sufficient. We must insist that the compil-
er for the language we choose conforms
to the highest possible set of standards
available. Unlike commercial software, the
safety of our uniformed personnel and
the success of our military missions
depend of the reliability of the choices
we make.◆

About the Author

Richard Riehle is a
visiting professor at
the Naval Postgraduate
School. He also owns
AdaWorks, a small com-
pany dedicated to Ada

consulting and training. His book
“Ada Distilled” may be downloaded
free from <www.adaic.org>.

Naval Postgraduate School
Computer Science Department
Spanagel Hall
Monterey, CA 93943
E-mail: richard@adaworks.com or

rdriehle@nps.navy.mil.

Data and Analysis Center for Software
http://dacs.dtic.mil
The Data and Analysis Center for Software (DACS), a
Department of Defense (DoD) Information Analysis Center, is
designated as the DoD software information clearinghouse,
serving as an authoritative source for state-of-the-art software
information and providing technical support to the software
community. From its home page, the user can access more than
30 specific technical topic areas related to software engineering
and software technology, including programming languages.
The DACS offers a wide-variety of technical services designed
to support the development, testing, validation, and transition-
ing of software engineering technology.

JOVIAL Lives
www.jovial.hill.af.mil
JOVIAL Lives is the official home page of the U.S. Air Force
JOVIAL program office, whose mission is to provide current
and future customers with superior service, support, and distri-
bution of the best JOVIAL compilers available and
JOVIAL/MIL-STD-1750A Integrated Tool Sets (ITS), which
are software support tools used for development and mainte-
nance of MIL-STD-1750A target applications. In compliance
with the Air Force's policy of software reuse, this office provides
a cost-effective way to maintain and modernize existing quality
software products.

Ada Power
www.adapower.com
Ada Power developer resources and tools Web site was formed
to contribute back to the Ada community and to help advocate
this powerful language. The site features examples of Ada source
code, including illustrating various features of the language and
programming techniques, various interfaces to popular operat-
ing systems, various algorithms, a collection of packages for re-
use in Ada programs, inplementation articles, numerous Ada
links, and more.

Computing Research Association
www.cra.org
The Computing Research Association (CRA) includes more
than 200 North American academic departments of computer
science, computer engineering, and related fields; laboratories
and centers in industry, government, and academia engaging in
basic computing research; and affiliated professional societies.
CRA's mission is to strengthen research and education in the
computing fields, expand opportunities for women and
minorities, and improve public and policy-maker understand-
ing of the importance of computing and computing research in
our society.

Ada Information Clearinghouse
www.adaic.org
The Ada Information Clearinghouse (AdaIC) was formed to
ensure continued success of Ada users and promote Ada use in
the software industry. The AdaIC has served a community of
software engineers, managers, and programmers for more than
15 years. The Web site provides articles on Ada applications,
databases of available compilers, current job offerings, and
more. The AdaIC is managed by the Ada Resource Association,
a group of software tool vendors that supports the use of Ada for
excellence in software engineering.

IEEE Computer Society
www.computer.org
With nearly 100,000 members, the International Electrical and
Electronics Engineers Computer Society (IEEE-CS) is the
world's leading organization of computer professionals.
Founded in 1946, it is the largest of the IEEE’s 36 societies. The
IEEE-CS’s vision is to be the leading provider of technical infor-
mation and services to the world's computing professionals.The
Society is dedicated to advancing the theory, practice, and appli-
cation of computer and information processing technology.

WEB SITES

